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ABSTRACT 

 

 

Despite the transition to digital information exchange, many documents, 

such as invoices, taxes, memos and questionnaires, historical data, and answers to 

exam questions, still require handwritten inputs. In this regard, there is a need to 

implement Handwritten Text Recognition (HTR) which is an automatic way to 

decrypt records using a computer. Handwriting recognition is challenging because 

of the virtually infinite number of ways a person can write the same message. For 

this proposal we introduce Kazakh handwritten text recognition research, a 

comprehensive dataset of Kazakh handwritten texts is necessary. This is 

particularly true given the lack of a dataset for handwritten Kazakh text. In this 

paper, we proposed our extensive Kazakh offline Handwritten Text dataset 

(KOHTD), which has 3000 handwritten exam papers and more than 140335 

segmented images and there are approximately 922010 symbols. It can serve 

researchers in the field of handwriting recognition tasks by using deep and 

machine learning. We used a variety of popular text recognition methods for word 

and line recognition in our studies, including CTC-based and attentionbased 

methods. The findings demonstrate KOHTD’s diversity. Also, we proposed a 

Genetic Algorithm (GA) for line and word segmentation based on random 

enumeration of a parameter. The dataset and GA code are available at 

https://github.com/abdoelsayed2016/KOHTD. 
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АННОТАЦИЯ 

 

 

Несмотря на переход к цифровому обмену информацией, многие 

документы, такие как счета-фактуры, налоги, служебные записки и анкеты, 

исторические данные и ответы на экзаменационные вопросы, по-прежнему 

требуют рукописного ввода. В связи с этим необходимо внедрить 

распознавание рукописного текста (HTR), которое представляет собой 

автоматический способ расшифровки записей с помощью компьютера. 

Распознавание почерка является сложной задачей из-за практически 

бесконечного количества способов, которыми человек может написать одно 

и то же сообщение. Для этого предложения мы вводим исследование по 

распознаванию казахского рукописного текста, необходим полный набор 

данных казахских рукописных текстов. Это особенно верно, учитывая 

отсутствие набора данных для рукописного текста на казахском языке. В 

этой статье мы предложили наш обширный казахский автономный набор 

данных рукописного текста (KOHTD), который содержит 3000 рукописных 

экзаменационных работ и более 140335 сегментированных изображений, а 

также около 922010 символов. Он может служить исследователям в области 

задач распознавания рукописного ввода с использованием глубокого и 

машинного обучения. В наших исследованиях мы использовали различные 

популярные методы распознавания текста для распознавания слов и строк, в 

том числе методы на основе CTC и на основе внимания. Полученные данные 

демонстрируют разнообразие KOHTD. Кроме того, мы предложили 

генетический алгоритм (ГА) для сегментации строк и слов на основе 

случайного перечисления параметра. Набор данных и код GA доступны по 

адресу https://github.com/abdoelsayed2016/KOHTD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/abdoelsayed2016/KOHTD
https://github.com/abdoelsayed2016/KOHTD


 

 

 

 

 

АҢДАТПА  

 

 

Ақпараттың цифрлық алмасуына көшкенiне қарамастан, шот-

фактуралар, салықтар, меморандумдар мен сауалнамалар, тарихи деректер 

және емтихан сұрақтарына жауаптар сияқты көптеген құжаттар әлi де 

қолжазбаны қажет етедi. Осыған байланысты компьютердi пайдалана 

отырып жазбаларды транскрипциялаудың автоматты тәсiлi болып табылатын 

қолжазбаны тануды (HTR) енгiзу қажет. Қолжазбаны тану адамның бiр 

хабарламаны жаза алатын iс жүзiнде шексiз санына байланысты қиын. Бұл 

ұсыныс үшiн бiз қазақ қолжазбасын тану зерттеуiн енгiземiз, қазақ 

қолжазбасының толық деректер жинағы қажет. Бұл әсiресе қазақ 

қолжазбасына арналған деректер жинағының жоқтығына байланысты. Бұл 

мақалада бiз 3 000 қолжазба емтиханнан және 140 335-тен астам 

сегменттелген кескiндерден, сондай-ақ шамамен 922 010 таңбадан тұратын 

қазақша офлайн қолжазба деректер жинағын (KOHTD) ұсындық. Ол терең 

және машиналық оқытуды қолдана отырып, қолжазбаны тану тапсырмалары 

саласындағы зерттеушiлерге қызмет ете алады. Бiздiң зерттеуiмiзде бiз сөз 

бен жолды тану үшiн мәтiндi тану үшiн әртүрлi танымал әдiстердi, соның 

iшiнде CTC негiзiндегi және назар аударуға негiзделген әдiстердi қолдандық. 

Алынған деректер KOHTD әртүрлiлiгiн көрсетедi. Сонымен қатар, бiз 

кездейсоқ параметрдi санау негiзiнде жолды және сөздi сегменттеу үшiн 

генетикалық алгоритмдi (GA) ұсындық. GA деректер жинағы мен коды мына 

жерден қол жетiмдi https://github.com/abdoelsayed2016/KOHTD. 

https://github.com/abdoelsayed2016/KOHTD
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INTRODUCTION 
 

 

Computer systems store, analyze, index, and search data in the digital era, 

enabling speedy and cost-effective retrieval. The legislation does not apply to 

handwritten materials. Recognizing handwritten documents, especially handwritten 

words, has a wide range of applications, from automated check or mail processing 

to archive digitization and document interpretation. Handwritten documents raise a 

slew of issues. They don’t have the text in an understandable format for computers. 

Instead, it should be taken from the digitalized image of the document. As a result, 

the handwritten text in the photograph must be detected and converted into ASCII 

text. The term ”offline handwriting recognition” relates to the procedure described 

above. 

This area has been the subject of over sixty years of research. The focus 

shifted away from solitary characters and digits and toward word recognition. For 

two reasons, cursive terms are slightly more difficult to recognize than characters. 

To begin with, a language’s vocabulary far exceeds its character set. Furthermore, 

segmenting a handwritten word image into characters is challenging because of the 

cursive style of the text, which adds ambiguity. The segmentation of a line of text 

into words is more ambiguous, thus the most recent strategy is to explicitly identify 

lines of text and apply a language model to constrain the transcription and aid in 

obtaining the right sequence of words. Recognition systems have progressed to 

end-to-end recognizers, which process entire documents without assuming that text 

line segmentation is available. 

Deep learning has been widely used in several fields nowadays, such as 

Med- 

ical applications like Cancers diagnoses, detection, and classification [1] and 

in Medical question answers [2], also deep learning has been used in software 

engineering such as optimizing the time and schedule of the software projects [3] 

and one of the most usages of Deep Learning is handwritten recognition for 

different languages as we will discuss. 

The most significant developments in HTR for postal correspondence were 

investigated. They are primarily concerned with determining the area of interest, 

text segmentation, and the removal of background noises that obstruct text 

processing, such as lost or unclear fragments, spots on paper, and skew detection, 

as well as artificial intelligence training to recognize written text in the target 

language. The most often used recognition models, such as HMM, hybrid Markov 

models (Hybrid HMM), convolutional (CNN), and recurrent neural networks, are 

investigated in this context (RNN). 

Deep Learning, specifically Deep Neural Networks (DNNs), has 

demonstrated excellent performance in a variety of areas, including object 

detection and classification in images with Convolutional Neural Networks 

(CNNs), speech recognition with Recurrent Neural Networks (RNNs), and named 

entity recognition with RNNs. 



Nowadays, appreciating handwriting is a popular pastime. Solving this 

conundrum would assist a lot of firms. A postal service, for example, faces the 

tough challenge of processing a high quantity of shipments. Handwriting 

recognition (HWR) or Handwritten Text Recognition (HTR) refers to a computer’s 

capacity to extract and interpret understandable handwriting data from a range of 

sources, such as paper documents, pictures, touchscreens, and other devices. 

Offline HTR is the process of converting letters or words into photos and 

subsequently into digital text. The input is a modifiable two-dimensional picture, 

and the output is a string of text. It has an outstanding human-machine interface 

and can automatically process handwritten papers. It also considers a sub-task of 

OCR, which focuses on extracting text from scanned documents and natural scene 

photos. Kazakh and Russian handwriting recognition has its own set of obstacles 

and rewards, and it has only lately been considered in comparison to other 

languages’ text recognition. 

For some types of images automatic recognition of handwritten texts still a 

challenging issue in spite of the recent improvements of the recognition methods 

and systems, in recent years, handwritten text recognition is attracting more 

researchers to work on it. A comprehensive and unbounded handwritten datasets 

are gaining more importance than before, handwritten text can be found: 

handwritten notes, memos, whiteboards, medical records, historical documents, 

stylus input text, etc. Therefore, support for understanding the handwritten text in 

images needs to be provided in a full OCR solution. For several languages and 

scripts, this highlights the need for research in the field of developing large-scale 

handwriting recognition systems. During the last thirty years researchers have been 

made different types of handwriting text recognition for many languages like 

English [4, 5, 6], Russian [7], Arabic[8, 9], Malayalam [10], Japanese [11], etc. 

Any language has a huge number of words. For example, The Oxford 

dictionary for the English language contains more than 300,000 words. A 

dictionary for the Kazakh language has more than 380,000 words [12], so it seems 

impossible to collect a handwritten word database that includes all words. As far as 

we know, for the Kazakh language, there is not available public dataset. 

In our research, we describe a large dataset, called Kazakh Offline 

Handwritten Text Dataset (KOHTD) to address challenging detection and 

recognition issues of handwritten Kazakh text in the scanned documents. We 

present a new 

Kazakh database for offline handwriting recognition. The dataset is written 

in Cyrillic and shares the same 42 characters in Kazakh. This dataset is a collection 

of exam papers from students. There are approximately 922010 symbols in the 

KOHTD dataset and 140335 segmented images. KOHTD is suggested for many 

reasons. First, this dataset can serve researchers in the field of handwriting 

recognition issues by using deep and machine learning. Second, it’s also a standard 

and pure dataset for evaluating and comparing different algorithm’s performances. 

Third, there is no available dataset in Kazakh language. 

Our database consists of a large collection of exam papers filled by students 

at Satbayev University and Al-Farabi Kazakh National University, this exam was 



made and answered in the Kazakh Language (99%) and Russian Language (1%) as 

shown in Fig. 1.2, after we received this exam answer, we scanned it and make 

experiments that related to pre-processing of the examination lists to automatically 

identifying lists, evaluate the contours of lists, recovering rotations, and also 

segmentation by line and by words so we can apply our Deep Learning model to 

recognize each word and remove the artifacts in the edges at the boundaries of 

segmented words We have developed our intelligent software using state-of-the-art 

deep learning models to solve the problem of recognizing and processing natural 

language, which consists of optical character recognition of the manuscript texts in 

Kazakh and Russian languages. 

The following section defines the related work on Handwriting Databases 

and Deep Learning models for handwritten. Section 4 presents the Data collection 

and storage phases as one of the most time consuming and costly stages. Section 5 

provides Dataset segmentation. Section 6 provides Experiment Result on the 

KOHTD dataset and conclusion and future work are given in Sect. 6.1. 

 

 

1.1Related works 

 

1.1.1Datasets 

 

 

IAM dataset [13, 14] is a handwritten sentence for the English language. The 

database can be used for handwritten recognition problems. This database is made 

on Lancaster-Oslo/Bergen (LOB) Corpus. The IAM Handwriting Database 



 
Figure 1.1. Some examples of images in our dataset 

 

3.0 is made by 657 different writers and contains 1,539 scanned handwritten 

pages with 5,685 labeled sentences and 13,353 labeled text lines with a total of 

115,320 labeled words, these database has been used in offline handwriting 

recognition 



 
Figure 1.2. Some examples of images in our dataset 

 

[15, 16, 17], handwritten text segmentation [18, 19] and writer identification 

[20,21]. 

RAMIS [22] is a database of an industrial application. The main reason to 

develop the database was to collect handwritten samples similar to those sent by 

postal mail and fax by individuals to different companies. The database was filled 

by 1300 volunteers who contributed to the data collection, providing 5605 mails 

that contain 12,723 pages. Every mail contains two to three pages, including the 



letter written by the volunteer, a form of the letter information, and an optimal fax 

sheet. Then the pages were scanned and the database was published to support 

testing of the tasks such as mail classification [23], handwritten recognition [24], 

and writer recognition[25]. 

The HKR [7] is a database of Russian and Kazakh texts that can be used to 

address detection and recognition problems, the database has 95% Russian and 5% 

Kazakh words/sentences, It’s written in Cyrillic and share 33 characters and there 

are 9 additional characters for Kazakh alphabet. The dataset is consisting of more 

than 1,500 forms. The database contains about 63,000 sentences which are more 

than 715,699 symbols. The HKR database was written by approximately 200 

different writers. 

The IFN/ENIT [26] is a database of handwritten Arabic town/village names. 

The forms are filled by 411 writers with nearly 26400 names that contain more 

than 210000 characters. IFN/ENIT database contains 26459 handwritten Tunisian 

town/village names. The database is developed for training and determining 

handwritten Arabic word recognition systems. 

KHATT [8] is a database of Arabic handwritten text, it can be used for 

Arabic offline handwritten text recognition. KHATT is consisting of 1000 

handwritten forms that are written by 1000 different writers. These forms scanned 

at 200,300 and 600 dpi resolutions, the database contains 2000 randomly selected 

paragraphs which consists of 9327 lines. These forms were randomly divided into 

70% for training, 15% for testing, and 15% for verification. The database was 

employed in text recognition, writer identification, and verification. 

HIT-MW [27] is a database for Chinese handwriting text, it can be used for 

offline Chinese handwritten text recognition problems. The current version of the 

HIT-MW database contains 853 forms and 186,444 characters. The database is 

collected by postal mail and middleman not face to face, it can serve many 

applications concerning real handwriting recognition. 

 

 

1.1.2 Handwritten Deep Learning Models 
 

Approaches to handwritten text recognition can be classified into the 

following categories: Techniques based on HMMs and approaches based on 

RNNs. For cursive text recognition, HMM-based approaches have a number of 

advantages. HMM, models are resistant to noise and can tolerate variations in 

writing; there are automated algorithms for training the HMM models, and the 

HMM tools are freely available. Cursive text segmentation is error-prone and time-

consuming, which is not required by HMM. 

Bunke [15] proposes a system for offline recognition of unconstrained 

handwritten texts with a wide vocabulary. Only one assumption is made regarding 

the data: it is written in English. This enables us to apply Statistical Language 

Models to improve the performance of their system. Data from single and 

numerous writers have been used in several experiments. Lexica of various sizes 

(between 10,000 and 50,000 words) were utilized. The usage of language models 



has been found to improve the system’s accuracy. their strategy is detailed in-depth 

and compared to other ways for dealing with the same problem that has been given 

in the literature. It is suggested that an experimental configuration be used to 

correctly deal with unconstrained text recognition. 

Safabakhsh [28] uses a continuous-density variable-duration hidden Markov 

model, CDVDHMM [29] to present a full method for recognizing Farsi Nastaaligh 

handwritten words. New techniques are used in the preprocessing step to locate 

and eliminate ascenders, descenders, dots, and other secondary strokes from the 

original image after binarization, noise reduction, and linked component 

specification. After that, a new segmentation method based on upper contour 

analysis and two other processes is used. This algorithm’s major purpose is to 

avoid the problem of under segmentation. The over-segmentation problem can be 

solved by taking into account variable duration states in the system. The 

CDVDHMM models the sequence of obtained sub-characters by determining the 

right-to-left order. In the feature space, eight features are used to represent 

symbols, including three Fourier descriptors and five structural and discrete 

characteristics. This feature vector is size and shifts insensitive. Pure characters 

(without secondary strokes) and some compound forms of characters in the 

Nastaaligh handwriting style are considered in the model. 

AlKhateeb [30] Using Hidden Markov Models (HMMs), a word-based 

offline recognition system is proposed. Preprocessing, feature extraction, and 

classification are the three stages of the approach. The first step is to segment and 

normalize the words from the input scripts. Then, using a sliding window moving 

across each mirrored word image, a set of intensity features is collected from each 

of the split words. Meanwhile, structure-like information such as the number of 

subwords and diacritical marks are retrieved. Finally, these characteristics are 

merged into a classification scheme. Intensity features are utilized to train an 

HMM classifier, and the results are then re-ranked utilizing structure-like features 

for a higher recognition rate. Extensive trials were conducted utilizing the 

IFN/ENIT database, which comprises 32,492 handwritten Arabic words. 

Otherwise, RNNs, such as the gated recurrent unit (GRU) [31] and the long 

short-term memory (LSTM) [32] can fix this problem. Speech recognition [33], 

machine translation [34], video summarising [35], and others. sequence-to-

sequence learning tasks have demonstrated RNN models’ amazing skills. It is 

necessary to convert a two-dimensional image to a vector and send it to an encoder 

and decoder in order to transform it for offline HTR. 

GRU, and LSTM handle the problem by combining information and features 

from many sources. RNN networks are fed these handwriting sequences. The input 

feature does not require segmentation due to the usage of Connectionist 

Temporal Classification (CTC) [36] models. One of the main advantages of 

the CTC algorithm is that it does not require any segmented labeled data. We can 

employ data alignment with the output. 

RR Ingle [37] focuses on three issues that arise while creating such systems: 

data, efficiency, and integration. For starters, acquiring large amounts of 

highquality training data is one of the most difficult tasks. They solve the challenge 



by analyzing online handwriting data gathered for a large-scale online handwriting 

recognition system. They present our picture data generating pipeline and 

investigate how online data may be used to construct HTR models. They show that 

when only a few real photos are available, as is frequently the case with HTR 

models, the data improves the models dramatically. It allows supporting a new 

script for a much-reduced price. Second, they propose a neural network-based line 

recognition model without recurrent connections. The model reaches a level of 

accuracy comparable to LSTM-based models while allowing for more 

simultaneous training and inference. Finally, they show how to integrate HTR 

models into an OCR system in a straightforward manner. These components make 

up a solution for integrating HTR into a large-scale OCR system. 

Espana-Boquera [38] proposes hybrid Hidden Markov Model (HMM) and 

Artificial Neural Network (ANN) models for identifying unconstrained offline 

handwritten texts. Markov chains were employed to describe the structural 

elements of the optical models, and a Multilayer Perceptron was used to estimate 

the emission probability. With supervised learning approaches, this work also 

introduces novel strategies for removing slope and slant from handwritten text and 

normalizing the size of text images. Slope correction and size normalization are 

performed by using Multilayer Perceptrons to classify the local extrema of text 

contours. Artificial Neural Networks are also used to reduce slant in a nonuniform 

manner. Experiments were conducted using offline handwritten text lines from the 

IAM database, and the recognition rates attained were among the best for the 

identical job when compared to those published in the literature. 

F Abdurahman [39] proposes an offline handwritten Amharic (the language 

of the Federal Government of Ethiopia) word recognition system based on 

convolutional recurrent neural networks. Convolutional neural networks (CNNs) 

for feature extraction from input word images, recurrent neural networks (RNNs) 

for sequence encoding, and connectionist temporal classification as a loss function 

are all part of the proposed system. they have created a dataset of handwritten 

Amharic words, HARD-I. their best-performing recognition model achieved a 

WER of 5.24 percent and a CER of 1.15 percent from testing on various 

recognition models utilizing their dataset. When compared to existing models for 

offline handwritten Amharic word recognition, the proposed models perform well. 

 

 

1.2 Motivation 
 

The absence of handwritten datasets for Kazakh-Russian language, as well 

as public datasets in Kazakh-Russian language, is the topic addressed in this 

research. Kazakh languages are highly tough and annoying to recognize when it 

comes to text recognition since writers can write the character touch together, 

making character segmentation impossible. When it comes to text recognition, 

Kazakh-Russian languages are extremely difficult and challenging because writers 

can write the character contact together, making character segmentation impos-

sible. 



 

 

1.3 Report structure 
 

The report is structured as following: 

• Introduction: Introduction to and motivation of the problem, previous 

related and useful work, and the goal of project. 

• Data collection and storage : explain how the dataset collected, stored and 

annotated. 

• Dataset segmentation : Explain how the segmentation process done by 

line (Line segmentation) and word (Word segmentation). 

• Results and discussion: Results from the performed experiments including 

training stability, performance, and comparison of models are shown and 

discussed. 

• Conclusion: The conclusions that can be drawn from the results are listed. 



Chapter 2. Theoretical Background 

 

2.1 Linear regression 
 

 

The linear model is one of the most fundamental statistical models, and it is 

used in a variety of fields including statistics and machine learning, thus its 

relevance. 

Assuming a linear relationship between a set of input vectors x1,x2,...,xN with 

    

xi ∈ p and output vectors y1,y2,...,yN with yi ∈ p the linear model is defined as  

 

 
 

with w1,w2,...,wp being a weight vector of size wj ∈ M for each dimension 

  

p, and b ∈ M being the bias i.e. the “learned” parameters of the model, and 

  

εi ∼ N(0,σε
2)@M being the noise in the data which is assumed to follow a 

Gaussian distribution with zero mean and a standard deviation of [10]. If this 

assumption does not hold, the linear model should not be used. 

 

 

∀i the bias is incorporated in the weight xi Letting w0 = 1p and ˜x = 

matrices and the model definition reduces to 

  

 
 

By denoting 

  



 
 

the linear model can be expressed in the following compact matrix notation 

 

Y = WX + E                       (2.7) 

 

Determining the values of the weight matrix W can be done in multiple 

ways, but the most common way is to minimize the “Residual Sum-of-Squares” 

(RSS), which is given as 

 

 
 

 

 

 

 

 

 

 

 

 

 



Since the expression is quadratic in the parameters a unique solution can be 

found analytically. The RSS-estimate of the weight matrix is therefore given by 

 

 
 

which can be found by solving 

 

 
 

which leads to the closed form solution 

 

 

 
 

 

2.2 Artifical Neural Networks 

 

Artificial neural networks (ANN), also known as ”Neural networks,” are a 

type of pattern recognition model inspired by the human brain that have dominated 

machine learning research and earned their own branch of machine learning called 

”Deep Learning” due to their extensive application. A neural network is made up 

of connected nodes that resemble brain neurons and have connections that 

resemble axons. Like a real neuron, the node in the neural network receives an 

input signal from one or more axons and generates a particular activation signal. 

From here on, the nodes in an ANN will be referred to as ”neurons” throughout the 

text. Given a set of input signals x1,x2,...,xN and a resulting output activation signal 

a the neuron can be visualized as in Figure 2.1. 

 
Figure 2.1.  Visualization of a single linear neural network neuron with N 

input connections 

where the activation a will be a weighted sum of the inputs 

 

 
 



i.e. each neuron will act as a linear regression model presented in Section 

2.1, which then will act as the input to another neuron. 

Because stacking multiple linear regression models will result in linear 

regression, the activation is usually transformed using a nonlinear function known 

as a ”activation function,” denoted sigma(.), i.e. the new output of each neuron will 

be . 

 
 

Common choices of activation functions are so-called “sigmoidal” functions 

which include (but is not limited to) the sigmoid function and the hyperbolic 

tangent 

                                 (2.17) 

               (2.18) 

which both have the sigmoidal form seen in Figure 2.2 but differs in the 

output range where the sigmoid function maps an input to the range [0, 1], and 

corresponds to each neuron being a logistic regression model, and the hyperbolic 

tangent maps to the range [-1, 1]. 

 
Figure 2.2. Sigmoid vs. hyperbolic tangent 

 

From some algebraic manipulation it is found that the two functions have the 

following relation 

 tanh(x) = 2σ(2x) − 1 (2.19)  

 

Which makes it difficult to argue choosing one over the other as activation 

function, since the model should be able to learn the same patterns using any of the 

two. Other activation functions includes “Rectified linear unit” (ReLU) given as  

 

 ReLU(x) = max(0,x) (2.20) 

The sign (.) function, the”leaky rectified linear unit” (Leaky ReLU), and 

many more. The essential requirement for activation functions is that they must be 

differentiable, allowing for the computation of their gradient with respect to a 



given set of weights. The tanh, sigmoid, and ReLU functions are all employed in 

this project for distinct objectives. This will be discussed in greater detail later. A 

neuron with a”sigmoidal” activation function will now be represented in Figure 2.3 

to differentiate the types of neurons employed in a network. 

 

 
Figure 2.3. Visualization of a single neural network neuron with “sigmoidal” 

activation function 

 

These neurons can be aligned, connected, and stacked in different ways 

constructing different type of networks often refered to as “network architectures”. 

The following sections will explain the following network types 

• Feed-forward neural network 

• Convolutional neural network 

• Recurrent neural network 

• Bidirectional recurrent neural network 

 

 

2.2.1 Feed-forward neural network 

 

The Feed-Forward Neural Network (FFNN) is one of the simplest types of 

neural networks where, as the name indicates, information is only fed forward in 

the network. FFNN’s consists of an “input layer”, and one or more so-called 

“hidden layers” with the last hidden layer being the “output layer”. Despite the 

simplicity of the FFNN it is a very powerful model. This is emphasized in [14] 

where it is shown that a single layer FFNN is capable of approximating any 

function. In 

Figure 2.4 a 3-layer FFNN is shown with an input of size 3 and an output of 

size 2. 

 



Figure 2.4. Visualization of a 3-layer feed-forward neural network with 

input 

    

x ∈ @3 and output y ∈ @2 

Denoting L the number of hidden layers and N(l) the number of neurons in 

layer l, with l = 0 being the input layer and l = L being the output layer, and 

denoting the weight matrix between layer l−1 and layer l as W(l) ∈  @N(l) × N(l−1) 

onstructed by concatenating the weight-vectors associated with each neuron in 

layer l−1, i.e. ] one can compute the activation of 

neuron 

k in layer l like in (2.16) using 

 

 
    

with z(0) = x ∈ p being the input vector, and thereby z(L) = yˆ ∈ N(L) the 

network output with the number of output neurons N(L) being the dimensionality of 

the output vector ˆy. For a classification problem with K classes the number of 

output neurons N(L) is usually N(L) = K where each neuron k represents the 

probability of class Ck denoted p(Ck | x) computed using the “softmax” function 

given as 

  (2.22) 

 

which acts as generalization of the sigmoid function for multidimensional 

input, and due to it’s normalization factor can be directly treated as a probability, 

since 

 

 
 

During training, the ”1-of-K” coding method may be used to represent the 

target vector y for each category k, with all elements of y being 0 except element k, 

which is a 1. The number of layers that are hidden L denotes the network’s 

”depth,” with ”deep” networks able to learn abstract feature combinations from the 

data owing to its complexity, but ”shallow” networks may not. However, as the 

network’s depth grows, the danger of ”overfitting” the training data, in which the 

network begins to represent the data’s noise, grows. The amount of training data 

and the difficulty of the problem to be solved are generally tradeoffs. 

Denoting W(l) = {w1w2 ...wL} as the set of network parameters, the network 

function f computing the output for a given input is uniquely defined as 

 



z(L) = yˆ = f(x | W)   (2.24) 

 

i.e. the weights define the network. In order to find the optimal weights for a 

given network and a given set of training data, one must define a loss function for 

the network for which the weights should be optimized w.r.t. 

 

Loss function 

 

Given a classification problem like in (2.21) with K classes we want to find 

the weights which maximizes the conditional probability p(Ck | x) for the correct 

classes k, i.e. given a dataset D = {(x1,y1),(x2,y2),...,(xN,yN)} we want to maximize 

the probability assigned to the dataset by the network 

 

 
 

which leads to a maximum-likelihood estimate of the optimal weights WML 

[8]. 

One can then define the loss function L(D) as the probability in (2.25), or 

more commanly as the negative natural logarithm of the probability for the given 

dataset D as 

 

 
 

which then must be minimized instead of maximized like in (2.25), hence 

also more suitable for a “loss” function. 

Using the rule ln(a.b) = ln(a) + ln(b) it is seen that 

 

 
 

i.e. we can define an “example loss” L(x,y) for each example (x,y) ∈ D as 

 

 
 

and thereby we have 

 

 



 

which we can optimize w.r.t. the network weights in order to obtain an 

estimate of the optimal weights WML for a given training dataset D [8]. For the 

given classification problem with K classes we define the per-example network 

probability p(y | x,W) from the conditional probability given in (2.22) 

 

 
 

with y being the “1-of-K” encoded class vector. By substituting (2.30) into 

(2.28) we get K 

 

 
 

It’s known as the ”cross-entropy” loss function. Because both the loss 

function and the network are made up of differentiable operators, any gradient-

based optimization strategy may be used to train the network using the loss 

function ”cross-entropy.” This means that in order to lower the size of the loss 

function,and thereby find the optimal weights WML, the gradient of the loss 

function w.r.t. the weights W, i.e. 

 

 
 

needs to be computed. This can be done using the “Backpropagation” 

method which will be explained in Section 2.2.1.2. 

 

Backpropagation 

 

The backpropagation algorithm is an algorithm for efficiently computing the 

gradient of some given loss function w.r.t. the weights of a FFNN. I.e. given the 

weights of each layer of a given network 

 



 
the backpropagation algorithm computes 

 

 
 

Given a training example (x,y) ∈ D from the dataset D the first step of the 

algorithm is to pass the input vector x through the network, and thereby compute 

the networks output vector ˆy, called the “Forward pass”, with the current weight 

values of the network. 

Second step is the so-called “Backward pass” which involves propagating 

errors back through the network. 

Starting from the output layer one can compute the gradient of the loss 

function for a single given weight wi,j
L from using the chain-rule ( 

 

 
 

where it is seen from (2.15) that 

  

 
 

with  being the activation of the j’th neuron in layer L−1, and we define 

 

  

 
 

as the ”error” of the i’th output neuron. 

This defines the gradient of the loss function w.r.t. the weights leading to the 

output layer as 

  

 
 



By defining the error  for l = 1, ..., L-1 for the remaining layers like in 

(2.39) we have 

  

 
 

where it is seen that  and using (2.21) the term  can be 

expressed as N(l) 

 

 
 

which from inserting into (2.41) yields 

 

 
 

from where it is seen that the only term remaining when taking the 

derivative of the sum w.r.t.  is the term where k′ = i, i.e. the derivative simplifies 

to 

 

 
 

and since )is independant of k the final recursive expression is found to 

be  

 

 



 

where the recursive dependency is shown explicitly, i.e. the errors  

depends on the errors from the later layer  

Finally having computed the errors of each neuron in the network, the 

gradients can be computed for each layer like for the output layer shown in (2.40) 

  

 
 

and hence making the training of the FFNN efficient. 

 

 

2.2.2 Convolutional Neural Networks 

 

 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning 

method that can take an input image and give importance (learnable weights and 

biases) to various aspects/objects in the image, as well as differentiate between 

them. The amount of pre-processing required by a ConvNet is much less than that 

required by other classification techniques. Although primitive methods necessitate 

hand-engineering of filters, with enough preparation, ConvNets can learn these 

filters/characteristics. A ConvNet’s design is inspired by the Visual Cortex’s 

structure and is comparable to the communication pattern of Neurons in the 

Human Brain. Individual neurons can only respond to stimuli in the Receptive 

Field, a tiny portion of the visual field. A collection of these fields can be piled on 

top of one another to occupy the complete visual field. A ConvNet may 

successfully capture the Spatial and Temporal relationships in a picture by 

applying necessary filters. The architecture achieves superior fitting to the picture 

dataset due to the reduced number of parameters involved and the reusability of 

weights. In other words, the network can be trained to recognize the image’s level 

of complexity. 

In the figure 2.5, The three-color planes — Red, Green, and Blue — have 

been split in an RGB image. Color spaces such as Grayscale, RGB, HSV, CMYK, 

and others can be used to store files. 

You can imagine how computationally hard things will get once photos are 

larger than 8K (7680x4320). The ConvNet’s goal is to compress the pictures to a 

format that is easier to process while keeping elements that are necessary for a 

decent prediction. When creating an architecture capable of learning features while 

still being scalable to huge datasets, this is crucial. 



 
Figure 2.5. 4x4x3 RGB Image 

 

 

2.2.3 Convolution Layer — The Kernel 

 

 

Image Dimensions = 5 (Height) x 5 (width) x 1 (Number of channels, eg. 

RGB) The green section in the above demonstration resembles our 5x5x1 input 

picture, I. The Kernel/Filter, K, is the variable that performs the convolution 

operation in the first part of a Convolutional Layer. It is shown in yellow. K has 

been chosen as a 3x3x1 matrix. 

The Kernel shifts 9 times, each time conducting a matrix multiplication 

operation between K and the picture part P over which the kernel is hovering since 

Stride Length = 1 (Non-Strided). 

The filter changes to the right at a given Stride Value till it parses the 

complete 



 
Figure 2.6. 4x4x3 RGB Image distance 

 

Then it hops down to the beginning (left) of the picture with the same Stride 

Value and repeats the procedure until the full image has been visited. The 

operation is show in 2.6 and 2.7. 

 

 
Figure 2.7. Convolution operation on a MxNx3 image matrix with a 3x3x3  

 

Kernel In the case of photos with many channels, the Kernel has the same 

depth as the input image (e.g. RGB). Matrix Multiplication ([K1, I1]; [K2, I2]; 

[K3, I3]) is performed between the Kn and In stacks, and the results are combined 

with the bias to produce a flattened one-depth channel Convoluted Feature Output. 



The Convolution Operation is used to extract high-level characteristics such 

as edges from an input image. Limiting ConvNets to only one Convolutional Layer 

isn’t essential. The first ConvLayer is traditionally responsible for gathering 

LowLevel data such as edges, color, gradient direction, and so on. With the 

addition of layers, the architecture responds to the High-Level properties as well, 

giving us a network that understands the photographs in the dataset as well as we 

do. 

The process yields two sorts of results: one in which the convolved 

function’s dimensionality is reduced when compared to the input, and the other in 

which the dimensionality is raised or unaltered. In the first situation, Valid Padding 

is used, whereas in the second case, the Same Padding is used. 

When we augment the 5x5x1 picture into a 6x6x1 image and then put the 

3x3x1 kernel over it, we discover that the convolved matrix has dimensions 

of 5x5x1. The term ”Same Padding” was invented as a consequence. 

However, if we do the same thing without padding, we obtain Valid 

Padding, which is a matrix with the same dimensions as the Kernel (3x3x1). 

 

 

2.2.4 Pooling Layer 

 

 

The Pooling layer, like the Convolutional Layer, is in charge of lowering the 

Convolved Feature’s spatial scale. Dimensionality reduction reduces the amount of 

processing power needed to process the data. It may also be used to extract 

rotational and positional invariant dominant features, which can help with the 

training phase of the model. 

Pooling may be divided into two types: maximum pooling and average 

pooling. Max Pooling returns the highest value from the picture’s Kernel-protected 

area. Average Pooling returns the average of all the values from the Kernel’s 

region of the image. 

Max Pooling works as a Noise Suppressant as well. It removes all noisy 

activations while simultaneously de-noising and reducing dimensionality. Average 

pooling, on the other hand, reduces dimensionality as a noise-suppression 

approach. As a result, we may conclude that Max Pooling outperforms Average 

Pooling. 

The Convolutional Layer and the Pooling Layer make up the i-th layer of a 

Convolutional Neural Network. The number of such layers may be expanded even 

higher, depending on the picture complexity, to collect even more low-level data, 

but at the cost of additional computational power. 

After going through the aforesaid approach, we were able to get the model to 

grasp the characteristics. The final result will then be flattened and sent into a 

conventional Neural Network for classification. 

 



2.2.5 Classification — Fully Connected Layer (FC Layer) 

 

 

Using a Fully-Connected layer to learn non-linear combinations of high-

level information represented by the convolutional layer’s performance is a 

(usually) low-cost method. The Fully-Connected layer is learning a possibly non-

linear function in that space.an example is shown in 2.8. 

We’ll flatten the image into a column vector now that we’ve changed it to a 

format suited for our Multi-Level Perceptron. Every round of training uses 

backpropagation to send the flattened output to a feed-forward neural network. The 

model can discriminate between dominating and low-level properties in images 

and categorize them using the Softmax Classification technique over a period of 

epochs. 

There are a variety of CNN architectures available, all of which have played 

a role in developing algorithms that power and will continue to power AI in the 

 
Figure 2.8. Example Of CNN model near future 

 

The following are a few of them: 

• LeNet 

• AlexNet 

• VGGNet 

• GoogLeNet 

• ResNet 

• ZFNet 

 

 
 

 



2.2.6 Recurrent neural network 

 

Although the FFNN provided in Section 2.2.1 is a strong model, it is not 

without flaws. One is that it is a memoryless model, which means that the network 

will have no knowledge of prior inputs for each input. However, a ”Recurrent 

Neural 

Network” may be used to attain this attribute (RNN). RNNs are essentially 

the same as FFNNs, with the exception that each layer l not only passes its output 

to the next layer l + 1, but also to itself, resulting in a ”recurrent connection.” This 

is visualized in Figure 2.9. 

 

 
  

Figure 2.9. Visualization of a 3-layer recurrent neural network with input x ∈ 

@3 and output y ∈ @2 

  

A popular way of visualizing RNN’s is by so-called “unfolding” the network 

and thereby explicitly show the recurrent connections between each time-step t. 

An example of the network shown in Figure 2.9 unfolded can be seen in 

Figure 2.10. 

Let input variables be sequences of length T i.e. x = x(1),x(2),...,x(T)e.g. 

representing each character in a sentence of length T, and denote 

 

 
 

the set of ]weights for the 

recurrent connections (the output layer has no recurrent connections) with and 

 . Then denote the activation of neuron k in layer l at a given time-step t 

expressed by extending (2.21) with a term for the recurrent connection 



 
Figure 2.10. Visualization of an unfolded 3-layer recurrent neural network (2 

recurrent layers and 1 output layer) with input sequences of length T 

 

x(1) represents the initial input at time-step t = 1 of a given observation x and 

z(2,T) the final output at time-step t = T. 
  

 
 

with  for a complete definition of the recurrency. Finally the BPTT 

algorithm defines the gradients as summing the error terms for each time-step t [8] 

  

 
 

Even though this recurrent time-dependency of RNN’s make them capable 

of learning long-term dependency patterns, and even capable of utilizing the 

information of any input value it has ever seen in theory, this is found to not work 

be true in practice. Some of the problems and how to handle them will be 

discussed further in Section 2.2.4. 

 

 

2.2.7 Bidirectional recurrent neural network 

 

 

One limitation of a typical RNN is that the network may only use 

information from prior time steps at a particular time-step t. The use of 

”Bidirectional Recurrent Neural Networks” (BRNNs) allows the network to have 

both prior and future information available at time t. This is accomplished by 



feeding the sequence to the network in both normal and reversed order, each with 

its own recurrent hidden layer, and then passing both through the network [29]. 

This, of course, necessitates the availability of future time-steps at all time-steps t; 

so, it would not work, for example, for a decoder that predicts one character at a 

time and uses the previous character to predict the next. 

 
Figure 2.11. Visualization of an unfolded 3-layer bidirectional recurrent 

neural network with input sequences of length T 

 

zfw
(l,t) and zbw

(l,t) denotes the forwardsand backwards passed activation of layer 

l at time t respectively. z(l,t) denotes the merged backards and forwards passes. 

A visualization of a BRNN can be seen in Figure 2.11 where it is shown that 

the output of the forwards- and backwards recurrent layers are concatenated before 

being fed as input to the next layer. This is one way of handling the extra hidden 

state from the backwards layer. Another way could be to project the merged 

outputs to the size of a single output layer, to maintain the state size throughout the 

network. 

 

 

2.2.8 Long short-term memory 
 

 

The conventional architecture of RNNs, as discussed in Section 2.2.6, has 

several issues with processing recurring information in the network. Learning long-



term dependencies, in particular, has been proven to be a serious challenge for 

conventional RNNs in practice [24]. The fact that each time-step information is 

transmitted back into its own hidden layer has demonstrated to either blow out or 

degrade the outputs exponentially, making training extremely difficult. The 

”exploding gradient problem” and the ”vanishing gradient problem” [8] are two 

terms for this. 

The widely utilized ”Long Short-Term Memory” (LSTM) [13] architecture 

can be employed to solve these challenges. The LSTM is the recommended RNN 

architecture above conventional RNNs because it handles long-term dependencies 

and keeps gradient information across time better than regular RNNs [8]. 

Because the LSTM allows a single RNN neuron to perform several 

operations, each neuron in the RNN is referred to as a ”block.” A simple 

illustration of a regular RNN block can be seen in Figure 2.12. z(t−1) as input and 

outputs a vector of size C with values in the range ]0, 1[ using the sigmoid function 

and learned weights and biases Wf,Wi,Wo,andbf,bi,bo. Letting g and h denote non-

linear functions often chosen as tanh, and L and N denote element-wise addition and 

multiplication respectively, the gates and their purpose can be explained as: 

 
Figure 2.12. A regular RNN block with x(t) and z(1,t) being the input and 

output respectively, and z(1,t−1) being the output from the previous time-step 

 

• The Forget gate: Determines what information to forget by performing 

elementwise multiplication between the output of the gate f(t) and the previous cell 

state c(t − 1). 

• The Input gate: Determines what new information from the cell values 

 should be added to the cell state by performing 

elementwise addition between the updated cell state and the modified 

cell values resulting in the new cell state c(t) =  

• The Output gate: Determines what values to output by performing 

elementwise multiplication between a non-linear transformation of the new cell 

state h(c(t)) and the output values of the gate o(t), leading to the final output of the 

block  



A visualization of the LSTM block can be seen in Figure 2.13 and the full 

set of equations is listed in (2.53) to (2.58).  

 

 
 

 
Figure 2.13. LSTM block with x(t) and z(t) being the input and output, and c(t) 

being the cell state at time-step t 

 

σ denotes sigmoid functions and g and h denotes non-linear functions. L 

denotes element-wise addition and N denotes element-wise multiplication.  

 

 
 

 
 

 
 

For the function g and h in the input and output gate, the tanh function is 

chosen as activation function in this project. 

 



 

2.3 Sequence to sequence learning 

 

 

The overall goal of mapping a given sequence to another sequence, which is 

the main aim of an RNN, is known as a sequence to sequence learning (seq2seq). 

Instead of employing a single RNN for the job, the work can be broken into two 

parts as shown in [32], with each task requiring a separate RNN. The first RNN 

encodes a given sequence to a fixed length vector representation (the ”encoder”), 

and the second RNN decodes the vector to the target sequence. This is the 

framework known as ”Encoder-Decoder.” 

An example of an input sequence ABC of length T = 3 encoded to a fixed 

vector  can be seen in Figure 2.14, where it is seen that the fixed vector  is 

taken as the state of the RNN at time-step T - the end of the sequence, which is 

represented to the network as an extra “end-of-sequence” class denoted the ¡EOS¿ 

token. 

 
Figure 2.14. Encoder: Example of an encoder encoding the input sequence 

ABC to a fixed vector representation  

 

The state of the decoder is then initialized with the value of the encoded 

input sequence  and using an extra “start-of-sequence” class, denoted the 

¡GO¿ token representing the beginning of the decoding, as the initial input decodes 

the target sequence. This is visualized in Figure 2.15 

 

 



Figure 2.15. Decoder: Example of a decoder decoding the target sequence 

WXYZ using the encoded fixed vector representation of the input sequence as 

initial hidden state 

 

 

2.4  Batch normalization 

 

 

Normalizing the training data to have a 0 mean and 1 variance is a standard 

pre-processing step when training neural networks. This makes learning the right 

weights easy for the network since it doesn’t have to alter its weights to meet the 

varying offsets in the data batches. 

However, when training deep neural networks, normalizing as a pre-

processing phase appears to be insufficient, since the offsets of the data vary when 

the weights in the layers are modified, indicating that normalizing as a pre-

processing step is insufficient. 

[16] proposes a strategy for dealing with this problem called ”Batch 

normalization.” Rather than just normalizing the data prior to training, each mini-

batch of training data is standardized prior to each layer of a network. If a layer 

XinRnp receives input from a mini-batch of size n with each observation 

containing p features, and xj is the j’th dimension of each observation in the mini-

batch, then each dimension of the mini-batch is normalized using 

 

 
 

with γj,µj,σj and βjbeing learned parameters for each dimension with γj and σj 

being initialized at 1 and µj and βj initialized at 0. 

Batch normalization has been demonstrated to reduce deep network training 

time, improve performance, and improve training stability [16]. In addition, it 

functions as a regularizer. 

 

 

2.5  Optimization 
 

 

The purpose of neural network training is to reduce the network’s objective 

function (loss function) in proportion to its parameters to the smallest possible 

value. This optimization is often carried out using gradient-based optimization 

methods such as ”Gradient descent.” This project uses the ”Adam” algorithm, 

which is a gradient-based approach. 



Chapter 3. Data collection and storage 
 

 

The KOHTD database discusses the problem of recognizing manuscripts in 

Kazakh and Russian languages in relation to Cyrillic graphics, describes and 

investigates various approaches, as well as presents the results of the study, and 

suggests the Bluche and Puigcerver models [40, 41] for comparing the results. The 

recognition of handwritten text of the Kazakh-Russian language remains not fully 

investigated. In this regard, the development and research of new effective 

algorithms for recognizing handwritten text of the Kazakh-Russian language are 

relevant. The approach to the problem of handwriting recognition of the Kazakh-

Russian language, based on the use of neural networks, is proposed. The main 

stage of handwriting data collection of the Kazakh-Russian language consists of 

the following stages: 

• Pre-processing for handwriting recognition: at this stage, the image is 

processed to improve its quality and bring it to a form that is convenient for 

segmentation. At the pre-processing stage, the handwritten text is scanned with a 

Canon MF4400 Series UFRII scanner. The resolution for the scanned examination 

lists is 300 dpi and the color depth is 24 bits. Translation of paper documents into a 

digital graphical representation. 

• Segmentation of the scanned handwritten text into words: at this stage, the 

scanned handwritten text is divided, or segmented, into convenient parts for 

analysis. The most natural actions at this stage are to split the text into separate 

lines (line segmentation) and split the lines into words (word segmentation), where 

space is their separator. To do this, filters are consistently applied to the text to 

remove noise and determine the boundaries of words. 

• Annotation of segmented words, which will map each image to its text in 

json format file. 

 

 

3.1 Labeling in the database 

 

 

The main idea was as follows: images of segmented words were sent to 

volunteer users via Telegram bot named @collectorOfdataset bot (botCollector). It 

is a messenger application for mobile phones that allows you to create programs in 

Python and register them as bots [42]. To simplify the process of collecting 

annotations, it was decided to send the same image to two random users. In case 

the sent annotations from both users turned out to be absolutely identical, we 

considered this result to be reliable. 

After sending out half of the images from the total number and receiving the 

results, it turned out that most of the users filled out annotations very inattentively, 

and sometimes even wrote deliberately inappropriate annotations. To exclude such 

cases, we trained a neural network for handwriting recognition on an already 

existing incomplete dataset. Further, after each input and sending of the annotation, 



we calculated the Levenshtein distance between the result from the user and the 

result of recognition. To our surprise, even on a partial dataset, the neural network 

produced subjectively excellent results. Also, by typing the command /my 

annotations, each user could see their statistics: the number of annotated words, the 

number of words whose annotations do not match the annotation from another 

user, the average confidence value. 

To get another picture for annotation, users sent the command /getImage  

(Figure 3.1). If the image contains incomprehensible words, only numbers, cor 

rections, words in a foreign language, several lines, the inscription had to be 

removed by clicking the ”Delete” button. 

 

 
 

Figure 3.1. Result of the /getImage command with 100% similarity 

 

The complexity of the handwriting recognition task is a large variety of 

handwriting, shapes, sizes of letters, and a variety of languages. Also, the paper 

with the text may contain “noises” – paper defects, foreign spots, which also 

complicates the whole process. Handwritten texts, as you know, differ from printed 

ones in the manifestations of individual handwriting properties: from the 

calligraphically printed letters of each word in the text to the illegibly written text 

as a whole, despite the fact that there is a standard for writing a particular letter, 

and this standard writing was taught in elementary school by every writer. But in 

the process of practicing writing, each writer develops individual features of 

handwriting. For handwriting recognition in the Kazakh language, more than 3 

thousand pages in A4 format were scanned from various handwriting samples 



(handwritten exam answers to students’ questions). Table 3.1 shows the 

recognition of the handwritten text of the Kazakh language of one voluntary user. 

At the time of this writing, 643 people were involved in this work (mainly 

students and university teachers). 

 

Table 3.1 Recognition of handwritten text of the Kazakh language 

N input Words Similarity 

1  отырып 100% 

2  яғни 75% 

3  адам 67% 

4  әдiстерiне 84% 

5  мөлшерде 100% 

6  тұтын 83% 

7  Ипотекалық 90% 

8  арқылы 83% 

9  қауiп 60% 

 

The table shows that the similarity to the answer depends on the person’s 

handwriting. In the Kazakh language, the letters “ң” and “қ” (Table 3.1, Line 7), 

“м” and “ш”(Table 3.1, Line 3), “н” and “и”(Table 3.1, Line 6), “л” and “е”(Table 

3.1, Line 8), are similar in handwritten text. In handwritten texts, the recognition 

process is complicated by the individual features of the handwriting, including the 

variability of writing letters. The presence of gaps in the text also contributes to the 

perception and recognition of the manuscript. They help you not to read the text 

sequentially from beginning to end. In addition to spaces, capital letters, as well as 

lowercase letters that come out of an even row of lines, are essential for the 

perception and recognition of what is written. A voluntary user sometimes enters a 

word with a capital letter with a lowercase one, which reduces the percentage of 

similarity with the answer (Table 3.1, line 9). 

 

 

3.2 Characteristics of the Database 

 

 

The database is composed of segmented words form over 3000 scanned 

exam papers. Generally speaking, a separate study needs to be done to estimate the 

number of people who filled out these forms. But we assume that on average one 

person completed 2 examination sheets. Accordingly, according to our estimates, 

we have approximately 1000 different style of handwriting paper. By the number 

of people who annotated the images, we can say for sure that at the time of writing 

this article, there were 643 of them, since we have all the records in the database. 

There are approximately 922010 symbols shown in Figure 3.2. Total number 

of images in the dataset are 140335 images after pre-processing and segmentation 

the examination lists. 



 

3.3 Statistic Analysis 
 

 

In this section, statistics on the database are presented. The database is split 

into three exclusive parts( training, validation, and test sets). Table 3.2 shows the 

uni-, bi-, and tri-grams of these sets and of the full database and also shows how 

many words, unique words, and number of characters for all the dataset and the 

parts. 

 

Table 3.2 N-gram statistics of the database 

Set 
Word 

count 

Unique 

word 

Character 

count 

Unigrams Bigrams Tri- 

grams 

Training 104278 24943 98258 24943 100142 104242 

Validation 22386 8870 21054 8870 22076 22376 

Testing 22351 8984 21054 21054 22040 22346 

All data 149015 31483 140366 31483 130912 147238 

 

Table 3.3 shows the out of vocabulary (OOV) statistics of the validation and 

test sets compared with the training data sets. 

 

Table 3.3 N-gram statistics of the database 

Out of 

Vocabulary 

OOV 

Tokens 

OOV 

Percentage 

Validation 3408 10.36% 

Testing 3442 10.46% 



 
Figure 3.2. Histogram of Characters in the dataset 



Chapter 4. Dataset segmentation 

 

 

Segmentation of text into lines is one of the most important steps in the 

optical character recognition (OCR) process, in particular, in optical recognition of 

document images. Line segmentation is the decomposition of an image containing 

a sequence of characters into fragments containing individual characters. 

The importance of segmentation is due to the fact that the majority of 

modern OCR systems are based on classifiers (including neural network) of 

individual characters, and not words or text fragments. In such systems, errors of 

incorrect insertion of cuts between characters, as a rule, are the cause of the lion’s 

share of errors in the final recognition. 

In our case, for line segmentation, we used a genetic algorithm. Genetic 

Algorithm (GA) is a classic evolutionary algorithm based on random enumeration 

of a parameter. By random here we mean that in order to find a solution using 

GA, random changes were applied to the current solutions to generate new 

ones. GA is based on Darwin’s theory of evolution. It is a slow, gradual process 

that works by making small and slow changes. In addition, GA is slowly making 

small changes to its decisions until it gets the best solution. 

To implement the genetic algorithm, first of all we need to determine the 

coordinates from where we will start making changes. For correct segmentation, 

the coordinates must lie between two lines. To determine the extreme points, we 

get a histogram of the picture in height. If the line is completely white, then the 

sum of pixels will be equal to 255, for convenience we will make an inversion, 

then the white color will be equal to zero. So our optimization function should tend 

to zero. The result is shown in Figure 4.1. 



 
 

Figure 4.1. Image histogram by height 

 

The histogram gives us the sum of the pixels of each line of the image, to get 

explicit vertices, we smooth the data using a gaussian filter. The result is shown in 

Figure 4.2. Let’s draw lines at the maximum (blue) and minimum (green) points on 

the histogram, we get Figure 4.3. 

Our coordinates will lie between the blue lines. After that, we run the genetic 

algorithm and get the line segmentation. The result is in Figure 4.4. 

After receiving the lines, we need to segment the words, since our model 

accepts words as input. We will do the segmentation of words in the same way, 

through histograms. First, draw a histogram horizontally and smooth it with a 

Gaussian filter. Find the vertices and draw in the picture. We get the result as in 

Figure 4.4. 



 
 

Figure 4.2. Smoothed image histogram by height 



 
Figure 4.3. Line drawing 



 
Figure 4.4. Genetic Algorithm Result, String Segmentation 

 

 
 

Figure 4.5. Segmentation of words 



Chapter 5. Experimental results 

 

 

A quantitative comparison of well-known recurrent neural networks (RNN), 

such as Bluche[40], Puigcerver[41], Flor [43] and Abdallah[44] models, has been 

implemented to choose the best performing model on the dataset given. At the first, 

the final dataset was split into three datasets as follows: Training (70%), Validation 

(15%), and Testing (15%). After training, validation, and testing datasets were 

prepared, the models were trained, and a series of comparative evaluation 

experiments were conducted. As experiment results proved, Flor model 

demonstrated the best performance with 6.52 % character error rate (CER), 

24.52% word error rate (WER) and 26.98% SER for the test dataset. 

 
 

5.1 Evaluation methods 

 

 

We used two ways to evaluate models in this article: For the results reported 

in the first technique, established performance measurements such as the character 

error rate (CER) and word error rate (WER)[45] are employed. The Levenshtein 

distance is calculated by dividing the total number of characters in the ground truth 

word (N) by the amount of character substitution (S), insertion (I), and deletions 

(D) required to convert one string into another. 

 

  (5.1) 

 

Similarly, the WER is determined by the sum of the number of term 

substitutions (Sw), insertions (Iw), and deletions (Dw) required for the 

transformation of one string into another, and divided by the total number of 

ground-truth terms (Nw). 

 

  (5.2) 

 

5.2  Training 
 

 

Tensorflow[46], a Python-based deep learning library, was used to train all 

of the models. Through Python, Tensorflow allows for the transparent usage of 

highly efficient mathematical operations on GPUs. In the Python script, a 

computational graph is built to define all operations required for the given 

computations. 

The machine that was carried out the tests with 2x Intel(R) Xeon(R) E-5-

2680 processors, 4x NVIDIA Tesla k20x graphics cards, and 100 GB of RAM. 



The usage of a GPU reduced model training time by about a factor of three, but 

this speed-up was not extensively evaluated during the project, so it may have 

varied. 

The report’s plots were built with the Python package matplotlib, and the 

visuals were developed with Inkscape, a vector graphics programme akin to Adobe 

Photoshop. 

The validation loss value is minimized in all models. The RMSProp 

method[47] is used to execute the stochastic gradient descent optimization using a 

base learning rate of 0.001 and 32 mini-batches. We also used early stopping with 

patience 20 since we wanted to track the validation loss at each epoch and 

terminate training if the validation loss did not improve after 20 epochs. 

 

 

5.3  Proposed Models 

 

 

Proposed Models in this section we will present deep learning models based 

on RNN and CTC loss function whhich has been implemented to choose the best 

performing model on the dataset given. Bluche [40] built a deep neural network 

that could split into three main parts, First convolutional layers as the encoder of 

the input images. It operates two-dimensional representations and supplies 2D 

features maps. This part contains about 20% of the model’s free parameters but 

represents the slowest component of their architecture. Aims to make it generic to 

be reusable to factorize the processing time. The second is the interface that 

transforms the 2D image-like representation into 1D representation. The third is 

the decoder, a bidirectional Long Short Term Memory Recurrent Neural Network 

(LSTM RNN) that processes feature sequences to predict a sequence of characters. 

This part has the most capacity of the network about 80% but has fast processing. 

Puigcerver [41] present a neural network architecture based on convolutional 

and 1D-LSTM layers to make line-level Handwritten Text Recognition (HTR). 

Then providing statistically sound empirical study that proves the architecture 

gives similar or better accuracy compared with the state of the art 2D-LSTM 

architecture and incomparably faster. And showing that performing appropriate 

random distortions on the training images, reduce the error rates. 

Flor[43] proposed New Gated CRNN architecture used for offline 

Handwritten Text Recognition (HTR) systems, by using the latest machine 

learning techniques and approaches in the field of Natural Language Processing 

(NLP), like the Gated mechanism which presented by Dauphin [48], and 

Bidirectional Gated Recurrent Units (BGRU) [49], Flor proposed Gated-CNN-

BGRU model which involves a few parameters and achieves a low error rate in the 

text recognition process. There are more contributions with the following aspects, 

handling long sentences with different styles, noise, and variations, even in the 

case of limited training data. Improving the recognition results through the new 



Gated-CNN-BGRU architecture. Reducing the number of trainable parameters, 

making the model smaller and with lower computational cost. 

Abdallah [44], aiming at improving HTR model accuracy in handwritten 

Cyrillic text recognition task. This model’s architecture consists of 4 main parts: 

encoder, attention, decoder, and CTC. An encoder part consists of 5 convolutional 

blocks, each of which is made up of a convolutional layer, Parametric Rectified 

Linear Unit (PReLU) activator [50] with Batch Normalization, and gated 

convolutional layer [40]. The Dropout technique is also applied at the input of 

some convolutional layers (with a dropout probability of 0.5) to reduce the 

overfitting issue [51]. As an attention part of this model’s architecture, Bahdanau 

attention mechanism is used [52]. Generally, attention mechanisms encode an 

input sentence by segmenting it into a fixed number of parts so they can be 

processed later by a decoder. Bahdanau attention mechanism enabled attention 

mechanism to focus on relevant parts of an input sentence, rather than hard 

segmenting it. The key role of Bahdanau attention mechanism applied between an 

encoder and decoder is to provide a richer encoding of the input sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 6. Conclusion and future work 

 
 

6.1 Summary 

 

 

In this research work, firstly, we have built the Kazakh Offline Handwritten 

Text Dataset (KOHTD). The dataset can serve as a basis for research in 

handwriting recognition. This consists of a large collection of exam papers filled 

by students at Satbayev University and Al-Farabi Kazakh National University. 

Secondly, we propose Genetic Algorithm (GA) based on random enumeration of a 

parameter. By random here we mean that in order to find a solution using GA, 

random changes were applied to the current solutions to generate new ones. GA is 

based on Darwin’s theory of evolution. It is a slow, gradual process that works by 

making small asnd slow changes. In addition, GA is slowly making small changes 

to its decisions until it gets the best solution. 

Finally, this research work tried to solve a handwritten Kazakh interpretation 

task using well-known RNN models, such as Flor, Abdallah, Bluche, and 

Puigcerver HTR models. These RNN models were first quantitatively evaluated 

against each other to select the best performing one. According to experiments, the 

Flor HTR model demonstrated the highest recognition rate overall. As experiment 

resultsproved, Flor model demonstrated the best performance with 6.52 % charac-

ter error rate (CER), 24.52% word error rate (WER) and 26.98% SER forthe test 

dataset. 

 

 

6.2  Future work 

 

 

As future work, we will present information about the gender to use for 

classification of gender based on handwriting and writer identification. The 

physical look of handwriting reveals the relationship between gender and 

handwriting. 
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